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The bunch length equation (envelope equation) near tran- 

sition for phase oscillation with space charge was derived by 

A. Sbrenssen (CERN MPS/Int. MU/EP 67-2, 1967) and used by 

E. D. Courant (NAL Report ~~-187, 1969) for a preliminary study 

of the yt -jump scheme for bunch length matching at transition. 

For completeness we shall give a brief outline of the deriva- 

tion of the envelope equation here. 

The equations for small phase oscillations of individual 

particles are 

cdJI=aw 
1 dt a = a(t) = 
1 
I 
) dw j dt=-W b = b&0) (1) % 

where $ and w are small deviations of the phase and the con- 

jugate "momentum" variable from their synchronous values. The 

first equation is a kinematic (geometric) relationship and does 

not depend on the space charge. The second is a dynamic equa- 

tion where b is the sum of two terms: 
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RF term: This term is proportional to the time-slope of 

the cavity voltage at the synchronous phase and, therefore, 

changes sign at the RF phase jump. 

Space charge term: This term is proportional to the 

second derivative of the linear charge density of the beam 

bunch. For the lowest moment of the linear charge density 

this term is proportional to L where 0 is the bunch half- 
e3 

length (envelope of I/J). 

The envelope equation of Eq. (1) is 

d 
dt (2) 

where S(>O) is the phase space area occupied by the beam bunch 

in w* unit. At transition a = 0, t = 0. Near transition a 

is approximately proportional to t. Since the dependence of 
11 a on the transition yt is through the factor 2 - 2) to in- 

corporate yt -jump we shall write Yt y 

l- yl Y\ t z aoAt a = const > 0. 
y i 

0 

Without yt-jump, A = 1 and a0 is just A. With yt-jump 

A = A(t) > 1. To simplify the problem we shall assume that 

the Yt -jump is turned on and off suddenly and that during the 

jump A = const > 1. 

For b we shall write 

b=+b + 
0 
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c b. = c I- g = const > 0. 

cos OS < 0, after RF phase jump 
cos qls > 0, before RF phase jump 

c 
7 

B=3 e’Ng,O(g 
2 RY2 

= geometrical factor % 4.5) 

The envelope equation (2) becomes 

2 
d 1 d0 
dt 

-- 
i i t dt A2 t = 0. 

e3 
(3) 

Now, we change the scale of t and 6 to kill the complicated 

constants. Let 

t = TX and 0 = Ky 

and rewrite Eq. (3) as 

3 aOs T2 Setting aoboTJ = 1 and - - = 
' K2 

1 we get 

6 t 
b ;3y3 A2 x = 0. (4) 

0 Y3 

1’2 

$ = 1 
ab' K3 = T3 

= a 0 4s L- 0 0 b. \v 

and the equation 

(5) 

where prime means d 
dx) and 
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f- fj= h-1 
( 

cos$ co, 
S 

after RF phase jump 

i 
i-1 cos OS > 0, before RF phase jump 

. 
; A=l-l(t 

; 

c-LL= B 
boK3 a l/2 

/x 3’2 
\s I 

0 

When all the parameters are substituted and reduced we get 

where 

1 T3 = 2 ,3 (z)2 B2y4 ' 
+ Icot $1 

(T = same time scale factor used 
by Sdrenssen) 

C = k3qo 

31/6 
k = T1,2 U2/3) = 0.91749 

,3=k32 
0 

3/2 ,3/' 
P l/2 1 

0 2 IT 
Y2 Icot Qsl 

(@O 
= bunch half-length at transition 

without space charge) 

3 (II. l/2 
rl, = k3 i2 = Sdrenssen 

parameter no(o) 

rP = classical proton radius = 1.53 x 10 -18 m 

N = total number of protons 
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S = total phase space area in 9 
hS 

P unit = mc~ 

w = he6 RF angular frequency = R 

Aside from the change in the sign-convention and the inclu- 

sion of ;, (for treating yt- jump) Eq. (5) is identical to that 

given by A. Sldrenssen. This equation is solved by numerical 

methods on a computer, 

A. For ]x] += 03 ;t =O,A= 1 and we can neglect the deriva- 

This gives the algebraic equation 

6Y4 t cy - x = 0. 

This equation gives the matched adiabatic solution of Eq. (5) 

at large Ix]. Hence, starting with the solutions of this 

equation at some large values of Ix] as initial conditions 

and integrating Eq. (5) to x = 0 we can get the matched solu- 

tions for both below and above transition. 

B. With no = 0 (no space charge), A = 1 (no yt-jump) and 6 

changing sign at x = 0 (RF phase jump at transition) the matched 

solution above transition is simply the reflection about the 

x = 0 axis of the matched solution below transition which is 

plotted in Figure 1 as Curve (0). Since y'(x = 0) = 0 the 

matched solutions above and below transition are automatically 

matched at transition. 

C. With no = 3.8 (value for the NAL booster) and A = 1 (no 

yt-jump) the matched solutions below and above transition are 

shown as Curves (I) and (II) in Figure 1. The mismatch at 
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transition caused by space charge effect is indicated by the 

values 

QX = 0) = 1.502, YII 
(x = 0) = 0. 

D, Starting the yt -jump before transition does not change 

y(x = 0) significantly. For example starting a yt-jump with 

+t A=l--=5atx=xl 
; 

we get for various values of x1 

x1 - 

0 1.50214 
-0.1 1.50210 
-0.2 1.50245 
-0.3 1.50537 
-0.4 1.51455 
-0.5 1.53433 
-1.0 1.80331 

Y(X = 0) 

The conclusion is that starting the yt -jump before transition 

does not significantly change the status of mismatch at x = 0. 

We have, therefore, confined ourselves to cases where the 

yt-jump starts at transition. (In practice, since the start 

of Yt -jump cannot be abrupt we will have to start the yt-jump 

just slightly before transition.) 

E. Because y'(x = 0) = 0 to integrate across x = 0 we have 

to invoke the continuity of $-(x = 0) or y"(x = 0). With 

A= 1 (no yt-jump) and 6 changing sign at x = 0 (RF phase jump 

at transition) the continuation of yI above transition is 

plotted as Curve (III) in Figure 1 which shows the familiar 

bunch length oscillation due to space-charge mismatching. 
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With A = 5 and 6 changing sign at x = 0 we get Curve (IV). 

Note that the first minimum of Curve (IV) is now above 

Curve (II). By adjusting A we obtain for A = 2.446 Curve (V) 

which is tangent to Curve (II) at x = x2 = 0.879 near the 

first minimum. Thus, with A = 2.446 and turning off the Yt-jump 

at x 2 = 0.879 the bunch length will be perfectly matched to 

Curve (II). For the NAL booster f = 0.407 x 103 see -' and 

T = 0.281 x 10m3 set, this value of A gives 

;, = -1.446; = -0.589 x lo3 -’ set 

and this value of x 2 gives the corresponding real time 

At = Tx2 = 0.247 x lO-3 sec. 

Together they give a total Yt-jump of 

*yt = ;,At = -0.145 

which is rather modest. 

F. The strings of dots leading away from the first minima of 

Curves (III), (IV), and (V) in Figure 1 show the effects of 

delaying the RF phase jump. Delaying the RF phase jump to 

x = x 3 for Curve IV, for example, means integrating Eq. (5) 

with A = 5, 6 = -1 from x = 0 to x = x 3 and, then, with A = 5, 

6 = +1 from x = x3 on. The dots give the positions of the 

first minima of the respective curves for x 3 = 0.1, 0.2, 0.3, 

. . . . The following conclusions can be drawn: 

For A = 5 matching can be obtained with x 3 Q 0.96 at 

x2 Q, 1.8. 
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For A = 2.446 another matching exists with x3 'L 0.77 at 

x2 Q 1.67. 

For A = 1 (no yt-jump) delaying RF phase jump cannot pro- 

duce matching; however, it can reduce the amplitude of the 

bunch length oscillation. Detailed computation shows that at 

the optimum x3 = 0.92 the maximum bunch length is reduced by 

about a factor of 1.4 from the case without RF phase jump 

delay (x3 = 0). 

In any case it is evident that delaying RF phase jump does 

not significantly relax the requirement on the yt-jump; in 

particular, it does not reduce the total jump Ayt. 

To summarize for the NAL booster (no = 3.8) we should 

1. Start the yt-jump at or near transition. 

2. Jump the RF phase at transition. 

3. The total yt-jump is Ayt = -0.145 

4. The total time for the yt-jump is At = 0.247 msec. 

5. After the yt-jump the jump quadrupoles can be turned 

off (Yt returns to its value before the jump) slowly 

(adiabatically) some time (say, 5 msec) after tran- 

sition. 

6. With the small Ayt the simple vx-jump (from vx = 6.7 

to vx = 6.555) scheme is possible. However, the 

scheme of quadrupoles proposed in FN-207 giving a 

yt-jump without affecting vx is still desirable. Of 

course, the required gradient B' for the quadrupoles 

is much smaller than indicated in that report. 
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For the NAL Main Ring no = 7.2 the corresponding solu- 

tions of Eq. (5) are plotted in Figure 2. The parameters 

producing matching are 

A= 2.180 x2 = 0.864 

The interesting point to note is that for '1, 5 2.5 the values 

of A and x2 for matching do not change significantly with no. 

To understand this we observe that the effect of the Yt-jump 

is to produce matching after the phase "ellipse9Y has rotated 

approximately 90'. In a crude manner of speaking the $-enve- 

lope before the yt -jump is matched onto the w-envelope after 

the yt-jump. One can, therefore, appreciate that although 

the mismatch in bunch length (+ envelope) increases sharply 

with qo, this particular mode of matching would not necessarily 

impose increasingly more stringent requirements on A and x 2 as 

‘10 
increases. However, the increased sharpness of the minima 

of Curves (III), (IV) and (V) in Figure 2 indicates that the 

precision of the yt -jump turn-off time x2 required for matching 

becomes more critical with increasing no. 

For the Main Ring 7 = 0.135 x 103 see -' and T = 2.44 x 

10-3 sec. The above values of A and x2 give 

-tt = -1.180 ; = -0.159 x 103 --IL see 

At = Tx2 = 2.11 x 10-3 set 

Ayt = ;,At = -0.336 

which is, again, not excessive. 
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